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Load-Compression Behavior of Flexible Foams 

K. C .  RUSCH, Scientifi Research &a$, Ford Motor Co., 
Dearborn, Michigan 481 d l  

synopsis 
The load-compreasion behavior of a foam reflects its geometric structure and the 

physical properties of the matrix polymer. Quantitative relations between these param- 
eters have been established in the present study. Based on both theoretical analyses 
and experimental data obtained on a flexible polyurethane foam, it is shown that the 
compressive stress can be factored into the product of two terms: (1) a dimensionless 
function of the compressive strain, +(e), calculated from experimental load-compression 
data and reflecting the buckling of the foam matrix; and (2) a factor, &f, where El is 
the apparent Young’s modulus of the foam (which is a function primarily of the modulus 
of the base polymer Eo and of the volume fraction of polymer, p). Thus the compres- 
sive stress behavior of a foamed polymer is determined by &, p, and the matrix geom- 
etry, the latter described by the function +(e). Using these established relations, it 
now is possible to delineate precisely the structural features a foam must possess- 
density, cell shape and size distribution, and modulus of the base polymer-to meet a 
given load-compression specification. 

INTRODUCTION 
Although foamed polymers are used extensively for cushioning, load dis- 

tribution, and energy absorption, little attention has been given to the in- 
fluence of the geometric structure of the foam matrix on the load-compres- 
sion behavior. A typical load-deflection curve for a lowdensity flexible 
foam, under uniaxial compression and tension, is shown in Figure 1. In 
extension the curve is linear up to approximately 10% elongation, but in 
compression the curve becomes decidedly nonlinear after only a few per 
cent deformation. The load-compression relation is typical of that for a 
buckling process and varies markedly between foams of different matrix 
geometry (Fig. 2). For energy absorption applications, a load-compression 
curve with a broad plateau (sample L or Q )  is preferable since the maximum 
energy-absorbing efficiency is obtained from a material that compresses at 
constant stress. On the other hand, for applications such as cushioning or 
load distribution, a more linear load-compression curve (sample R or E) 
is desired. 

To understand the relationship between the load-compression behavior 
and the physical properties and geometric structure of the matrix polymer, 
the compressive stress has been factored into the product of two terms: 
one dependent on the apparent Young’s modulus of the foam and the other 
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Fig. 1. Typical stressstrain curve for a low-density, flexible foamed polymer. 

dependent on the geometric structure of the foam matrix. This procedure 
permits comparison of the influences of matrix geometry between foams of 
widely different stiffness. 

The contribution of matrix geometry to the compressive stress, ex- 
pressed as a dimensionless function of compressive strain, #(€), is calculated 
from experimental load-compression curves for a series of low-density, 
flexible polyurethane foams of varying cell size, cell structure, and density. 
The function $(E) is shown to vary in a regular manner with the geometric 
structure of the matrix. 

ANALYTICAL APPROACH 

The nonlinear character of the load-compression curves presumably 
arises solely from collapsing, or buckling, of the foam matrix, and it is 
appropriate to separate the compressive stress into a factor reflecting the 
apparent Young’s modulus of the foam, E,, and a factor reflecting the 
collapse of the matrix, #(e). This can be expressed as follows: 

g = E,€+(E) (1) 

where (r and e are the compressive stress and strain, respectively, and E,  is 
the slope of the linear portion of the load-deformation curve; thus +(E) 
approaches unity as e approaches zero. This type of analysis has been 
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Fig. 2. Reduced compressive stress-strain curves for low-density, flexible foams of 
different cell geometry. 

employed in the interpretation of other nonlinear but has not 
been applied previously to compression of a foam. 

I n  principle, +(E) is dependent only on the geometric features of the 
matrix and independent of the modulus of the pure matrix polymer, Eo; 
therefore the time and temperature dependences characteristic of Eo should 
influence E only. 

The apparent modulus, E,, also is dependent on matrix geometry, but in 
a different manner than +(E). It has been shown both experimentally and 
the ore tic all^^-^ that the ratio E,/Eo depends primarily on the volume frac- 
tion of polymer, Q, and is largely independent of cell size. The following 
empirical equation* gives approximately the correct dependence for all 
values of cp if the cell geometry is close to spherical: 

Ej/& = ( ~ ( 2  + 7~ + 3v2)/12. (2) 

This relationship between Ef/Eo and (o has an initial slope of 1/6, as pre- 
dicted by Gent and tho ma^,^ and approaches unity as (o + 1. 

The shape of the load-compression curve varies markedly between foams 
of different cell geometry. Typical compression data for three poly- 
urethane foams and a rubber latex foam are shown in Figure 2; the physical 



2300 K. RUSCH 

TABLE I 
Foam Characteristics 

Cell size, in. 
Ef, 

Sample Foam type psi cp av. 95% range 

A polyuret,hane (I) 115. 0.34 0.005 0.0005-0.015 
€3 77. 0.24 0.007 0.001 -0.02 ‘ 6  

1( 

11 

1I 

‘ I  

C 25. 0.11 0.012 0.003 -0.03 
n 11.5 0.065 0.020 0.007 -0.05 
E 4 . 5  0.043 0.022 0.008 -0.06 
F 3.5  0.037 0.025 0.01 -0.06 
G polyurethane (11) 1.5 . 0.033 0.020 0.01 -0.04 
H 9 . 0  0.028 0.013 0.005 -0.025 “ 

( I  

“ 
J 14. 0.063 0.020 0.01 -0.04 
K 32. 0.105 0.020 0.01 -0.04 
L reticulated 18. 0.028 0.10 0.04 -0.2 

M 14. 0.028 0.050 0.02 -0.1 
polyurethane (11) 

11 

“ 

1‘ 

11 

N 9 . 4  0.028 0.035 0.01 -0.08 
P 16 0.028 0.020 0.01 -0.04 

R rubber latex 4 .9  0.12 0.010 0.001 -0.03 
Q 11. 0.032 0.012 0.005 -0.02 

characteristics of these foams are listed in Table I. To permit an easy 
comparison, the compressive stress data in Figure 2 are reduced by a con- 
stant factor such that the initial slope corresponds to an E,  of 10 psi for 
each curve. The same reduced compression curves are plotted on logarith- 
mic coordinates in Figure 3 and the $(B) functions are shown in Figure 4. 
Equation (1) is employed to compute $(e) from u as a function of E, after 
E,  has been evaluated from tensile stress-strain data or from compression 
data at small strains. 

The log $(€)-log B curve has several distinct features, corresponding to 
features of the load-compression curve, which are readily seen by comparing 
Figure 4 to Figures 2 and 3. Below some critical strain, the load-com- 
pression curve is linear and $(e) = 1.0. Then, as the matrix begins to 
buckle, #(e) begins to decrease; the strain at  $(c) = 0.95 will be defined as 
the “critical buckling strain.” If the foam exhibits a flat plateau in the 
load-compression curve, this is reflected as a slope of -1.0 in the log 
$(+log E curve: the smaller this negative slope, the less pronounced is the 
plateau in the load-compression curve. A negative slope greater than 1.0 
reflects a maximum in the load-compression curve (sample L). At some 
characteristic degree of compression, #( e) displays a minimum, representing 
the point a t  which no further collapse of the matrix is possible, followed by a 
rapid rise. When all of the voids have been compressed out of the matrix, 
c = 1 - (a, $(e) becomes greater than unity. Therefore, $(e) can be char- 
acterized in terms of four quantities: (1) the critical buckling strain, (2) 
the average negative slope, (3) the minimum value of #(e), and (4) the 
strain at #(e)min. 
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Fig. 3. Reduced compressive stress-strain curves for low-density, flexible foams of 
different cell geometry. 

E 

Fig. 4. The $(e) fiinctions calculated from the compressive stress-strain curves in 
Figures 2 and 3. 
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Ideally, # ( E )  should be independent of the geometric shape of the foam 
test piece. But the lateral constraints of the matrix a t  large compressions, 
that is, the contribution to the compressive stress resulting from deforma- 
tion (bulging) perpendicular to the applied stress, will be a function of the 
exterior dimensions. This is analogous to the uniaxial compression of a 
homogeneous rubber block, which has been described by Gent and L i n d l e ~ . ~  
The lateral constraints begin to contribute significantly to the compressive 
stress in the region of #(t)min, where the compressive stress no longer re- 
flects primarily the buckling of the matrix, and are relatively more signif- 
icant for high-density than low-density foams. This will be discussed in 
greater detail in a subsequent article. 

In  the present work, the bulk dimensions of all test pieces are similar, 
and the effect of the dimensions on #(t) is not evaluated. Data were ob- 
tained, however, which indicate that #(t) is independent of Eo and strain 
rate but highly dependent on matrix geometry. The dependence of #(e) 
on cell size, cell structure, and foam density is discussed in the following 
sections. 

EXPERIMENTAL 

Load-compression curves were obtained for a series of flexible poly- 
urethane foams varying in cell-size from 0.012 to 0.10 in. and in density 
from cp = 0.037 to 0.34. The samples were obtained from Mobay Chemical 
Company and Scott Paper Company. The physical characteristics of 
these foams are summarized in Table I. The average cell size and the cell 
size range encompassing about 95y0 of the cells were estimated from a visual 
observation on photomicrographs of a known magnification. 

Two types of polyurethane foams were examined: (1) normal polyure- 
thane foam consisting of ribs of polymer outlining the individual cells with 
membranes, or cell walls, between some of the cells and (2) “reticulated” 
polyurethane foam, in which all of these cell walls have been removed by a 
thermal process. The differences in cell structure obtainable in lowdensity 
polyurethane foam are shown in Figure 5. A polyurethane foam with a 
highly regular cell structure and many cell walls is shown in Figure 5a; 
this will be denoted as type 11. A similar foam with the cell walls removed 
by a reticulation process is shown in Figure 5b. A polyurethane foam with 
an irregular cell size and only a few cell walls (but not reticulated) is 
shown in Figure 5c; this “breadlike” structure will be denoted as type I. 

For comparison, load-compression data also were obtained for a single 
sample of “latex” foam (Goodyear Tire and Rubber Company) (Table I). 
This type of foam is prepared by the frothing and subsequent coagulation 
and curing of a compounded rubber latex. A latex foam never contains 
cell walls. The cell structure of this foam is shown in Figure 5d. 

The compression test pieces measured 2 X 4 X 4 in. and were compressed 
iri the 2-in. direction. Ideally, the test piece thickness should be at least, 
50 1 irnrs the aventgc cc41 sixr to miriimixe the edge offect, wheii compiithg 
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strain, but thicker samples of all the foams were not available. All the 
data presented were obtained at  room temperature and at a strain rate of 
about 0.5’%/sec, unless noted otherwise. 

The load-compression behavior of polymeric foams is found to be elasti- 
cally retarded, that is, a large hysteresis loop is observed; the hysteresis is 
substantially larger than that found in similar solid rubbery polymers. In 
addition, during the second compression the foam may exhibit an apparent 
stiffness which is lower than that during the first compression. The data 

a. Polyurethane Foam (TypeII) b. Reticulated Polyurethane Foam 

c.Polyurethane Foam (Type11 d. Rubber Latex Foam 

Fig. 5.  Photomicrographs showing the differences in cell geometry obtained in low- 
density foams. 

reported here represent an increasing compressive load and are characteris- 
tic of the first compression only, unless a specific reference is made to a 
second or third compression cycle. 

To measure the modulus of the foam in tension and to check linearity of 
the load-deformation curve through E = 0, foam blocks (2 X 2 X 4 in.) 
were bonded between aluminum plates with an epoxy-type adhesive and 
extended, or compressed, in the 4-in. direction. In all cases, the curves 
\vcrc essentially linear from E = -0.02 to +0.02 (positjive strain represents 
compression). The data for fCf:sre listcd i n  Table I. 
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RESULTS AND DISCUSSION 

Temperature and Strain Rate Dependence of *(e) 

To evaluate its temperature dependence, +( c) was calculated from load- 
compression data obtained at  25, 60, and 100°C for foam samples C, El G, 
H, N, and P. Increasing the temperature decreases Eo, and hence E,, but 
does not alter the geometric structure of the matrix. The temperature 
dependence of E,  is given in Table 11. In all cases, although E,  is de- 

TABLE I1 
Effect of Temperature on E,  

E,, psi 

Sample 25°C 

C 25. 
E 4.5 
G 15. 
H 9 .o 
N 9.4  
P 16. 

18. 
2 .8  

13.5 
7 .7  
7 . 1  

13. 

12. 

12. 
1 . 7  

5 . 8  
5 .8  

10. 

creased by a factor of about 1.5 to 2.5, #(E) for a given sample is found to be 
independent of temperature, and hence independent of Eo. If, however, 
the change in temperatures causes the matrix to become brittle or to de- 
grade, #(e) does change. Small changes in +(E) for these polyurethane 
foams are observed at  -60°C; and at  -196"C, large changes in #(e) are 
observed. These changes in +(c) are attributed to brittleness of the matrix 
a t  low temperatures. The differences between rigid and flexible foams will 
be discussed in greater detail in a subsequent article. 

The strain rate dependence of #(e) was evaluated from load-compression 
data for foam samples F, J, M and Q; and +(e) was observed to be inde- 
pendent of strain rate over the range of 0.1% to 20%/sec. At 25"C, E,  
is not changed appreciably by variations in strain rate. 

Density Dependence of *(e) 

The effect of the volume fraction of polymer, 'p, on $(e) for foams of 
similar cell geometry is shown in Figure 6 for type I polyurethane foams ('p 

= 0.037 to 0.34) and in Figure 7 for type I1 polyurethane foams ( c p  = 0.033 
to 0.105). and the critical buck- 
ling strain eb .  From the data in Figures 6 and 7 the following proportion- 
ality can be written: 

In  general, increasing cp increases 

#(e)min 0: PO.". (3 )  

This relation is empirical and cannot be expected to hold for all types of 
foams. The function $(e) is highly sensitive to cell geometry, and changing 
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Fig. 6. The dependence of +(e) on volume fraction of polymer for type I polyurethane 
foams. 
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Fig. 7. The dependence of fi(e) on volume fraction of polymer for type I1 polyurethane 
foams. 

the foam density may result in geometric changes which will cause #(e),i, to 
vary in a different manner than that given by eq. (3). 

Thus, for 
foams of similar geometry, the primary effect of density on the overall 
load-compression curve is the change in E,. Changes in # ( E )  may be of 
secondary importance; for example, taking a foam with 9 = 0.03, the 
increase in 9 required to  double #(e),i, would cause E,  to increase by a 
factor of about 40. Additionally, the load-bearing capacity of a flexible 
foam is commonly expressed as the stress a t  10% or 25% compression. 
I n  this region the changes in # ( e )  may be much less than those in the region 
of (Fig. 7), and the load-bearing capacity will be closely propor- 
tional to E,. 

From eq. (2) it can be seen that E,  is strongly dependent on 9. 
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The #(E) function is highly dependent on the geometric structure of the 
matrix; but this geometry is not adequately described in terms of an aver- 
age cell size. This undoubtedly accounts for the relative position of the 
#(E) curve for sample N in Figure 8; this foam had a noticeably less regular 
cell structure than the other reticulated foam samples. Therefore, while 
#(E) is dependent on d, other geometric features of the matrix may be much 
more significant. 

Structural Dependence of #(e) 

To assess the dependence of #(E) on the geometric structure of the 
matrix, #(E) was calculated for several foams of similar density ( c p  = 0.03- 
0.04) but widely different cell geometry. This comparison is shown in 
Figure 9. Samples G and H (broken lines) are normal polyurethane foams 
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with a regular cell-structure (type 11) ; samples Q and P are foams of similar 
cell size and structure after reticulation. For both types of polyurethane 
foams, increases as d decreases, but the effect of the removal of cell 
walls on $(e) is greater than the effect of doubling the average cell size. 
An additional comparison is provided with sample E ; this polyurethane 
foam h s  a cp and d similar to that of samples G and P, but it has a highly 
irregular cell structure (type I). Thus, as the cell structure becomes more 
regular, or cell walls are removed, $ ( ~ ) ~ i ~  decreases and the negative slope 
increases; cb does not appear to be significantly changed by the cell struc- 
ture. The large effect of structure on $(e) also is demonstrated in Figure 4. 
A rubber latex foam (sample R) has a highly irregular cell structure, which 
accounts for the relatively low negative slope (reflecting a less pronounced 
plateau in the load-compression curve) and high $(&,in. 
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Fig. 9. The dependence of fi(e) on cell geometry for foams of similar density. 

Because of differences in matrix geometry, a polyurethane foam may 
possess the same apparent Young’s modulus as a latex foam but only 30% 
of the load-bearing capacity a t  25% compression and only 15% at 50% 
compression. 

The data in Figures 4 and 9 clearly show that $ ( E )  is influenced most 
strongly by the specific details of the matrix geometry and that the volume 
fraction of polymer and average cell size are of secondary importance only. 
Unfortunately, this geometric character is a difficult quantity to describe 
quantitatively and it can be defined only in terms of a comparison to a 
matrix of known geometry. 

It is important to note that E,/Eo is rather insensitive to the details of the 
matrix geometry and depends primarily on cp. Therefore, when designing a 
foam for a particular application, if the shape of the load-compression curve 
is unacceptable, the cell geometry must be altered. On the other hand, if 
the shape is acceptable but the stiffness is not, then the density or Eo 
must be altered. In addition, temperature and strain rate changes influ- 
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ence primarily Eo such that the shape of the load-compression curve tends 
to be independent of these variables. 

Fatigue of Polyurethane Foams 

The load-compression curve of a polyurethane foam is sensitive to the 
previous compression history of the foam, exhibiting a decreasing stiffness 
and load-bearing capacity with an increasing number of compression cycles. 
Both E, and #(e) are observed to change; however, the relative decrease is 
largest during the first and second compression cycles. For polyurethane 
foams C, G ,  K, and M, the effect of compression history on E ,  is listed in 

- - 
- 
- 

- 
- 

- 3rd COMPRESSION 

2nd 18  

I st 

- 

- 
- FOAM SAMPLE C 

'' G 
----- 
- II 

E 

Fig. 10. The dependence of J.(a) on compression history for a typical reticulated poly- 
urethane foam. 
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Fig. 11. The dependence of $(e) on compression history for typical polyurethane foams. 
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TABLE I11 
Effect of Compression on E f  

Sample 1st Comp. 2nd Comp. 3rd Comp. 

C 25.0 24.5 24.0 
G 15.0 13.2 12.5 
K 32.0 31.5 29.0 
M 14.0 13.7 13.2 

Table 111, and the effect on #(e) is shown in Figures 10 to 12. A fourth 
compression cycle displayed only negligible changes in either E, or #(e) 
from the third cycle. The degree of compression was about 70% during the 
first cycle and about 95% during the second, third, and fourth cycles. The 
loss in stiffness and load-bearing capacity is attributed to tearing of the 
foam matrix, and thus the relative changes in E, and #(e) would be less if 
the degree of compression were less severe. 

2 .o 

0.1 1 I I I I I I I I I  I I I I I I l l 1  
.01 .02 .04 .06 .00 _I .2 .4 .6 .8 1.0 

E 

Fig. 12. The dependence of $ ( E )  on compression history for a typical type I1 polyurethane 
foam. 

The general effect of previous compression cycles on #(e) is to decrease 
#(€),,,in and eb. For samples C and G there also is a noticeable increase in 
the negative slope of the #(e) function, denoting a more pronounced plateau 
in the load-compression curve. The identical compression history pro- 
duced slightly different relative changes in #(€) for each polyurethane foam, 
but the present data do not suggest any specific relationship between these 
changes in #(e), that is, the fatigue resistance and the geometric structure of 
the foam. 

It is interesting to note that rubber latex foams exhibit a high degree of 
fatigue resistance compared to polyurethane foams. For foam sample R, 
four compression cycles (7001, compression) produced no detectable changes. 
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in E,  or +(e). The reason for this difference is uncertain, but it may result 
from the fact that the latex foam matrix is partially torn during the manu- 
facturing process such that no additional tearing takes place during com- 
pression. 

APPLICATIONS OF LOAD-COMPRESSION RELATIONS 

From a knowledge of +(E) and E,  and their dependences on foam param- 
eters-density, cell shape and size distribution, and modulus of the base 
polymer-it is possible to delineate precisely the physical characteristics a 
foam must possess to meet a given load-compression specification. The 
optimum type of foam for a particular application now can be determined 
with a minimum of trial-and-error evaluation. For example, if the shape 
of the load-compression curve is not suitable for a given application, then 
the cell geometry of the foam must be altered to achieve the desired + ( a ) ;  

but if the shape is satisfactory while the stiffness is not, then the volume 
fraction of polymer or the modulus of the matrix polymer must be altered to 
achieve the desired E ,  (eq. 2). 

Additionally, a knowledge of the dependence of +(e) on matrix geometry 
makes it possible to estimate the shape of the entire load-compression 
curve from a limited amount of experimental data. For example, fre- 
quently the compressive stress is known at a single compressive strain only, 
such as a = 0.25. Knowing E ,  + ( a )  can be calculated a t  this strain (eq. 1) ; 
and from a knowledge of the general type of cell structure, the load-com- 
pression curve can be estimated over the entire range of compressive strain 
which is of interest. If experimental data for E,  are not available, Ef can 
be estimated from the foam density and physical properties of the matrix 
polymer (eq. 2). 

Generally the temperature and rate dependence of the modulus are 
known for the base polymer but not for the foam. Since +(e) is essentially 
independent of temperature or strain rate and El is directly proportional 
to En, the modulus of the base polymer, the temperature and rate de- 
pendence of the compression curve for a given foam can be calculated from 
that of En. This is particularly valuable when a knowledge of the load- 
compression curve is required at  a particular temperature and rate which 
cannot be achieved with the available experimental facilities. 

CONCLUSIONS 

The compressive stress characteristics of a foam can be factored into the 
product of (1) a dimensionless function of compressive strain, + ( a ) ,  re- 
flecting the buckling of the matrix, and (2) a factor &,, where a is the com- 
pressive strain and E,  the apparent Young’s modulus of the foam. E ,  is a 
function primarily of Young’s modulus of the matrix polymer, En, and of the 
volume fraction of polymer; while +(e) is highly sensitive to the specific 
details of the matrix geometry, only moderately dependent on density or 
cell size, and independent of Eo (and hence independent of temperature or 
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strain rate). The experimentally evaluated strain function, #(E), cannot 
be expressed exactly by any simple analytical expression; but the critical 
featcures of #(e), plotted on logarithmic coordinates, are shown to vary in a 
regular and predictable manner with changes in the matrix geometry. 
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